Solving Parity Games in Big Steps

نویسنده

  • Sven Schewe
چکیده

This paper proposes a new algorithm that improves the complexity bound for solving parity games. Our approach combines McNaughton’s iterated fixed point algorithm with a preprocessing step, which is called prior to every recursive call. The preprocessing uses ranking functions similar to Jurdziński’s, but with a restricted codomain, to determine all winning regions smaller than a predefined parameter. The combination of the preprocessing step with the recursive call guarantees that McNaughton’s algorithm proceeds in big steps, whose size is bounded from below by the chosen parameter. Higher parameters result in smaller call trees, but to the cost of an expensive preprocessing step. An optimal parameter balances the cost of the recursive call and the preprocessing step, resulting in an improvement of the known upper bound for solving parity games from approximately O(mn 1 2 c) to O(mn 1 3 c).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Subexponential Lower Bound for Zadeh's Pivoting Rule for Solving Linear Programs and Games

The simplex algorithm is among the most widely used algorithms for solving linear programs in practice. Most pivoting rules are known, however, to need an exponential number of steps to solve some linear programs. No non-polynomial lower bounds were known, prior to this work, for Zadeh’s pivoting rule [Zad80]. Also known as the Least-Entered rule, Zadeh’s pivoting method belongs to the family o...

متن کامل

A subexponential lower bound for the Least Recently Considered rule for solving linear programs and games

The simplex algorithm is among the most widely used algorithms for solving linear programs in practice. Most pivoting rules are known, however, to need an exponential number of steps to solve some linear programs. No non-polynomial lower bounds were known, prior to this work, for Cunningham’s Least Recently Considered rule [5], which belongs to the family of history-based rules. Also known as t...

متن کامل

Generalized Parity Games

We consider games where the winning conditions are disjunctions (or dually, conjunctions) of parity conditions; we call them generalized parity games. These winning conditions, while ω-regular, arise naturally when considering fair simulation between parity automata, secure equilibria for parity conditions, and determinization of Rabin automata. We show that these games retain the computational...

متن کامل

Preprocessing parity games with partial Gauss elimination

We investigate the use of partial Gauss elimination as a preprocessing step to parity game solving. Gauss elimination is a well-known technique for solving Boolean equation systems. We present an Θ(V ) time algorithm for exhaustive partial Gauss elimination on parity games. Experimental validation shows that this approach is probably not feasible for speeding up the solving of real-world parity...

متن کامل

An experimental study of algorithms and optimisations for parity games, with an application to Boolean Equation Systems

We present an empirical study comparing algorithms for solving parity games. The problems that we solve all stem from the problem of model checking modal μ-calculus formulae against realistic specifications. We investigate the practical use of various optimisation techniques for solving parity games, showing that decomposition into strongly connected components and applying efficient algorithms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007